Skip to content Skip to sidebar Skip to footer

Contoh Soal Dan Pembahasan Pembagian Ruas Vektor

Anda perhatikan gambaran gambar di bawah ini,
Berdasarkan gambaran gambar di atas, pada pembagian ruas vektor maka berlaku: $$ \vec {p}= \frac {n \vec{a}+m \vec {b}}{m+n} \\ x_p = \frac {n x_a+m x_b}{m+n}  \\ y_p = \frac {n y_a+m y_b}{m+n} \\ z_p = \frac {n z_a+m z_b}{m+n} $$ Untuk lebih memudahkan Anda sanggup perhatikan beberapa pola soal dan pembahasan mengenai pembagian vektor di bawah ini.

#Soal 1. Pada segitiga ABC, E yaitu titik tengah BC dan M yaitu titik berat segitiga tersebut. Jika u=AB dan v=AC maka ruas garis ME sanggup dinyatakan dalam u dan v.... 
Pembahasan:
Karena E titik tengan BC maka BE=CE atau BE:EC=1:1. Berikutnya sesuai rumus pembagian ruas vektor, kita sanggup cari vektor AE. $$AE=\frac {CE.\vec{AB}+BE.\vec{AC}}{CE+BE} \\ AE=\frac {1.\vec{u}+1.\vec{v}}{1+1} \\ AE=\frac {\vec{u}+\vec{v}}{2}$$ Karena M titik Berat, Ingat panjang garis berat dari sisi yang disentuhnya yaitu 1/3. maka $$ ME = \frac {1}{3} AE \\ ME= \frac {1}{3} \frac {\vec{u}+\vec{v}}{2} \\ ME=  \frac {\vec{u}+\vec{v}}{6}$$

#Soal 2. Diketahui titik A (2,-1,5) , B (-4,2,-1) dan titik P berada pada AB sehingga AP:PB = 2:3. Koordinat titik P adalah...
a) (-2,1,1)  b) (-1,1,2)   c) ( -8/5 , 4/5,7/5)  d) (0,0,3)  e) (-2,1,13).

Pembahasan:
Saya akan buat sketch kondisi dari yang diketahui,
Karena AP:AB = 2:3, artinya sanggup ditentukan AP:PB = 2:1. Selanjutnya kalau saya buat garis dari titik O ke P. Maka sesuai rumus pembagian ruas vektor, sanggup ditemukan, $$x_p = \frac {PB. x_a+AP. x_b}{AP+PB}  \\ x_p = \frac {1.2+(-4). 2}{2+1} \\ x_p=-2 \\  y_p = \frac {PB y_a+AP y_b}{AP+PB} \\  y_p = \frac {1 .-1+2.2}{2+1} \\y_p=1 \\ z_p = \frac {PB z_a+AP z_b}{AP+PB} \\ z_p = \frac {1 5+2. -1}{2+1} \\ z_p =1$$
Kaprikornus anda sanggup jawab koordinat P (-2,1,1).

#Soal 3. Diketahui titik P (3,-1,7) dan Q(5,3,1). Jika titik R membagi PQ diluar (R terletak pada perpanjanngan PQ dengan perbandingan 3:-1. Maka koordinat titik R adalah..
a) (4,1,4)   b) (6,5,-2)   c) (9,4,-2)   d) (3,5/2,-1)   e) (9/2,2,5/2)

Pembahasan:
Sama menyerupai soal sebelumnya, saya akan buat ilustrasi,
PQ=3 ; QR=1.
Berdasarkan rumus di atas, koordinat titik Q adalah: $$x_Q = \frac {QR x_p+PQ x_r}{PQ+QR}  \\ y_Q = \frac {QR y_a+PQ y_b}{PQ+QR} \\ z_Q = \frac {QR z_a+PQ z_b}{PQ+QR}$$ Silahkan anda subtitusikan sendiri dari angka angka yang telah diketahui. Jika proses perhitungan anda benar, maka anda dapatkan koordinat (6,5,-2).
Sumber http://www.marthamatika.com/

Post a Comment for "Contoh Soal Dan Pembahasan Pembagian Ruas Vektor"