Skip to content Skip to sidebar Skip to footer

Binomial Newton (Ekspansi Binomial) Dalam Memilih Koefisien Suku Banyak

Binomial Newton atau dikenal juga dengan Ekspansi Binomial dapat dipakai untuk memilih koefisien suku banyak atau polinomial dengan pangkat besar. Misalkan saja: tentukan konstanta suku ke 5 dari $(2x-3y)^10$.

Dalam menghitung koefisien konstanta dari polinomial ini akan dipakai Kombinasi. Artinya, sekedar mengingatkan anda harus kembali ingat bahwasanya:
$_nC_r = \frac {n!}{(n-r)!r!}$

Berikutnya, dalam koefisien perpangkatan berlaku kaidah segitiga pascal.

Sederhananya, setiap perpangkatan dapat kita jabarkan dalam bentuk ibarat ini,
$ \begin{align} (a+b)^0 & = 1 \\ (a+b)^1 & = a + b \\ (a+b)^2 & = a^2 + 2ab + b^2 \\ (a+b)^3 & = a^3 + 3a^2b + 3ab^2 + b^3 \\ (a+b)^4 & = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + y^4 \\ (a+b)^5 & = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5 \\ (a+b)^n & = ..... \end{align} $

Jika dalam jumlah besar, perpangkatan tersebut akan merepotkan anda menciptakan segitiga pascal. Solusinya, kita hubungkan segitiga pascal tersebut dengan Kombinasi. Dimana segitiga pascal dalam bentuk kombinasi tersebut dapat ditulis,
Apa arti semua itu? Mungkin sedikit memusingkan bila anda melihat teorema ibarat itu saja. Sekarang mari kita lihat dalam bentuk Binomial Newto.

Bentuk Umum dari binomial tersebut adalah... 
$(a+b)^n = \displaystyle \sum_{r=0}^n C_r^n a^{n-r}b^r $.

Berikut pola soal dan pembahasan mengenai Binomial Newton ini.

#Soal 1

Lakukan Ekspansi atau Jabarkalah Bentuk pangkat berikut ini,
a). $ (x+2)^4 $
b). $ (2a + 3b)^3 $
c). $ (a - 2b)^3 $
d). $ \left( x + \frac{2}{x} \right)^5 $

Pembahasan :
a). $ (x+2)^4 \, $ artinya $ n = 4 $
$ \begin{align} (a+b)^n & = \displaystyle \sum_{r=0}^n C_r^n a^{n-r}b^r \\ (x+2)^4 & = \displaystyle \sum_{r=0}^4 C_r^4 x^{4-r}2^r \\ & = C_0^4 x^{4-0}2^0 + C_1^4 x^{4-1}2^1 + C_2^4 x^{4-2}2^2 + C_3^4 x^{4-3}2^3 + C_4^4 x^{4-4}2^4 \\ & = 1. x^{4}.1 + 4. x^{3}.2 + 6. x^{2}.4 + 4. x^{1}.8 + 1. x^{0}.16 \\ (x+2)^4 & = x^{4} + 8x^{3} + 24 x^{2} + 32x + 16 \end{align} $

b). $ (2a + 3b)^3 \, $ artinya $ n = 3 $
$ \begin{align} (x+y)^n & = \displaystyle \sum_{r=0}^n C_r^n x^{n-r}y^r \\ (2a + 3b)^3 & = \displaystyle \sum_{r=0}^3 C_r^3 (2a)^{3-r}(3b)^r \\ & = C_0^3 (2a)^{3-0}(3b)^0 + C_1^3 (2a)^{3-1}(3b)^1 + C_2^3 (2a)^{3-2}(3b)^2 + C_3^3 (2a)^{3-3}(3b)^3 \\ & = 1. (2a)^{3} .1 + 3. (2a)^{2}(3b) + 3. (2a)^{1}(3b)^2 + 1. (2a)^{0}(3b)^3 \\ & = 1. 2^3.a^3 .1 + 3. 2^2.a^2.(3b) + 3. (2a).3^2.b^2 + 1. 1.3^3.b^3 \\ (2a + 3b)^3 & = 8a^3 + 36a^2b + 54ab^2 + 27b^3 \end{align} $

c). $ (a - 2b)^3 \, $ artinya $ n = 3 $
$ \begin{align} (x+y)^n & = \displaystyle \sum_{r=0}^n C_r^n x^{n-r}y^r \\ (a-2b)^3 & = (a + (-2b))^3 \displaystyle \sum_{r=0}^3 C_r^3 a^{3-r}(-2b)^r \\ & = C_0^3 a^{3-0}(-2b)^0 + C_1^3 a^{3-1}(-2b)^1 + C_2^3 a^{3-2}(-2b)^2 + C_3^3 a^{3-3}(-2b)^3 \\ & = 1. a^{3}.1 + 3. a^{2}(-2b) + 3. a^{1}(-2b)^2 + 1. a^{0}(-2b)^3 \\ & = a^{3} + 3. a^{2}(-2b) + 3. a.(-2)^2.b^2 + 1. 1.(-2)^3.b^3 \\ (a-2b)^3 & = a^{3} -6a^2b + 12ab^2 -8b^3 \end{align} $

d). $ \left( x + \frac{2}{x} \right)^5 \, $ artinya $ n = 5 $
$ \begin{align} (a+b)^n & = \displaystyle \sum_{r=0}^n C_r^n a^{n-r}b^r \\ \left( x + \frac{2}{x} \right)^5 & = \displaystyle \sum_{r=0}^5 C_r^5 x^{5-r} \left( \frac{2}{x} \right)^r \\ & = C_0^5 x^{5-0} \left( \frac{2}{x} \right)^0 + C_1^5 x^{5-1} \left( \frac{2}{x} \right)^1 + C_2^5 x^{5-2} \left( \frac{2}{x} \right)^2 \\ & + C_3^5 x^{5-3} \left( \frac{2}{x} \right)^3 + C_4^5 x^{5-4} \left( \frac{2}{x} \right)^4 + C_5^5 x^{5-5} \left( \frac{2}{x} \right)^5 \\ & = 1. x^{5} .1 + 5. x^{4} \left( \frac{2}{x} \right) + 10. x^{3} \left( \frac{2^2}{x^2} \right) \\ & + 10. x^{2} \left( \frac{2^3}{x^3} \right) + 5. x^{1} \left( \frac{2^4}{x^4} \right) + 1. x^{0} \left( \frac{2^5}{x^5} \right) \\ & = x^5 + 5. x^{4} \left( \frac{2}{x} \right) + 10. x^{3} \left( \frac{4}{x^2} \right) \\ & + 10. x^{2} \left( \frac{8}{x^3} \right) + 5. x^{1} \left( \frac{16}{x^4} \right) + 1. x^{0} \left( \frac{32}{x^5} \right) \\ & = x^5 + 10 x^{3} + 40 x^{1} \\ & + 80 \left( \frac{1}{x} \right) + 80 \left( \frac{1}{x^3} \right) + \left( \frac{32}{x^5} \right) \\ \left( x + \frac{2}{x} \right)^5 & = x^5 + 10 x^{3} + 40 x + \frac{80}{x} + \frac{80}{x^3} + \frac{32}{x^5} \end{align} $


Cara Menentukan Koefisien dengan Binomial

Koefisien suku ke k dari sebuah perpangkatan $(a+b)^n $ dapat dihitung dengan rumus,
$_n C_{(k-1)} a^{n-(k-1)}b^{k-1}$

Sebagai Contoh Soal Mencari Koefisien Suku ke-k

Tentukanlah suku ke-3 dari $ (2x - 5y)^{20} \, $ dan tentukan juga koefisien dari suku ke-3 tersebut.
Pembahasan :
Bentuk binomial : $ (2x - 5y)^{20} \, $ artinya $ n = 20 $.
diinginkan suku ke-3 artinya $ k = 3 $.
Rumus suku ke-$k \, $ ialah $ \, C_{(k-1)}^n a^{n-(k-1)}b^{k-1} $ .

Suku ke-3 alhasil $ (2x - 5y)^{20} = (2x + (- 5y))^{20} \, $ :

$ \begin{align} C_{(k-1)}^n a^{n-(k-1)}b^{k-1} & = C_{(3-1)}^{20} (2x)^{20-(3-1)}(-5y)^{3-1} \\ & = C_{2}^{20} (2x)^{18}(-5y)^{2} \\ & = \frac{20!}{(20-2)!2!} . 2^{18}.x^{18}(-5)^2.y^{2} \\ & = \frac{20!}{18!2!} . 2^{18}.x^{18}.25.y^{2} \\ & = \frac{20.19.18!}{18!.2.1} . 2^{18}.x^{18}.25.y^{2} \\ & = \frac{20.19}{2} . 2^{18}.x^{18}.25.y^{2} \\ & = 190 . 2^{18}.x^{18}.25.y^{2} \\ & = (190 \times 2^{18} \times 25). x^{18}y^{2} \\ & = 4750 \times 2^{18} x^{18}y^{2} \end{align} $.

Makara suku ke tiga dari $ (2x - 5y)^{20} \, $ = $ \, 4750 \times 2^{18} x^{18}y^{2} \, $ dan koefisien pada suku ketiga tersebut ialah $ 4750 \times 2^{18} $.

Sumber http://www.marthamatika.com/

Post a Comment for "Binomial Newton (Ekspansi Binomial) Dalam Memilih Koefisien Suku Banyak"