Skip to content Skip to sidebar Skip to footer

Cara Memilih Persamaan Fungsi Dari Grafik Trigonometri

Pada suatu pembahasan sebelumnya aku telah jelaskan bagaimana cara menggambar grafik trigonometri lengkap dengan teladan soal. Anda sanggup baca bab tersebut pada: Menggambar Grafik Trigonometri.

Di halaman ini, aku akan jelaskan bagaimana perkara sebaliknya. Apabila diketahui grafik trigonometri, tentukan persamaan fungsi trigonometri tersebut. Sederhananya katakanlah 'bagaimana cara memilih persamaan fungsi dari grafik trigonometri.

Mengingatkan, Bentuk umum fungsi trigonometri sebagai berikut,
$ i) \, f(x) = a \sin (kx \pm b) \pm c \, \\ \text{ periode } = \frac{2\pi}{k} \\ \text{amplitudo } = |a| \\  \\ ii) \, f(x) = a \cos (kx \pm b) \pm c \\ \text{ periode } = \frac{2\pi}{k} \\  \text{amplitudo } = |a| \\  \\  iii) \, f(x) = a \tan (kx \pm b) \pm c \\ \text{ periode } = \frac{\pi}{k} $
Atau
y= a[Trigono](kx+b)+C
a= amplitudo/simpangan terjauh dari
k= konstanta
b= pergeseran grafik secara horizontal
C= pergeseran grafik secara vertikal/dari garis normal (sumbu x).

Agar sanggup dengan gampang memilih persamaan kalau diketahui grafik trigonometri maka, anda harus menemukan  nilai nilai di atas. Untuk memilih trigonometri yang digunakan, apakah sin, cos atau tangen anda harus kenal dengan bentuk dasar grafik trigonometri sin x, cos x, tan x. Berikut gambar dasar grafik trigonometri tersebut.
Mari kita lihat penerapannya dalam teladan soal dan pembahasan mencari persamaan grafik fungsi trigonometri, kalau diketahui gambar grafik di bawah ini.

Contoh 1:
Tentuka persamaan fungsi trigonometri dari gambar di bawah ini,
Pada suatu pembahasan sebelumnya aku telah jelaskan bagaimana cara menggambar grafik trig Cara Menentukan Persamaan Fungsi dari Grafik Trigonometri
Pembahasan:
Langkah 1:
Perhatikan garis normal. Garis normal masih di sumbu x - artinya C= 0

Langkah 2: 
Grafik Trigonometri yang dimulai dari 0 ialah sin. Artinya grafik tersebut ialah grafik sinus.

Langkah 3:
Amplitudo, jarak antara garis normal hingga titik tertinggi. Di sini sanggup anda lihat jaraknya 1

Langkah 4:
k =$\frac {2 \pi}{Periode}$, dimana periode ialah panjang 1 gelombang. pada grafik di atas, untuk satu gelombang $ \frac {2 \pi}{3}$. Artinya k =$ \frac {2 \pi}{ \frac {2 \pi}{3}}$ = 3.

Langkah 5:
b, pergeseran terhadap sumbu x titik nolnya. Disini tidak ada pergeseran, alasannya ialah grafik sinus memang dimulai dari 0. Bila ada pergeseran maka (-) untuk pergeseran ke kanan dan + untuk pergeseran ke kiri.

Makara dari bentuk umum:  
y= a[Trigono](kx+b)+C
y=1.sin (3x+0)+0= y = sin 3x

Contoh 2:
Persamaan fungsi trigonometri dari gambar grafik di bawah ini adalah...
Pembahasan:
Langkah 1:
Perhatikan garis normal. Garis normal masih di sumbu x - artinya C= 0

Langkah 2: 
Kita asumsikan ini grafik cos.

Langkah 3:
Amplitudo, jarak antara garis normal hingga titik tertinggi. Di sini sanggup anda lihat jaraknya 3

Langkah 4:
Perhatikan gambar, di atas. antara $ \frac {\pi}{4}$ dengan $ \frac {3 \pi}{4}$ ialah $\frac {3}{4}$ gelombang. Bisa ditulis:
$\frac {3 \pi}{4}-\frac {\pi}{4} = \frac {3}{4} gelombang$
$\frac {2 \pi}{4} = \frac {3}{4} gelombang$
untuk 1 gelombang maka nilainya $\frac {2 \pi}{3}$ anda sanggup gunakan perbandingan menghitung ini.

k =$\frac {2 \pi}{Periode}$, dimana periode ialah panjang 1 gelombang. pada grafik di atas, untuk satu gelombang $ \frac {2 \pi}{3}$. Artinya k =$ \frac {2 \pi}{ \frac {2 \pi}{3}}$ = 3.

Langkah 5:
Untuk grafik cosinus yang kita asumsikan pada langkah 2, seharusnya dimulai dari klimaks pada dikala x=0. Namun pada gambar yang ada, nilai 1 ada pada $ \frac {\pi}{4}$, yang digeser ke kanan. Artinya nilai b =  $ - \frac {\pi}{4}$ (*geser kanan - ; geser kiri +)

Makara dari bentuk umum:  
y= a[Trigono](kx+b)+C
$y=3. \cos (3x - \frac {\pi}{4})+0= 3. \cos (3x - \frac {\pi}{4})$

Atau kalau anda ingin dalam bentuk grafik sinus, anda sanggup memakai sudut berelasi.
cos A = sin (90+A). artinya,
$y= 3. \cos (3x - \frac {\pi}{4}) \\ y =  3. \sin ( \frac {\pi}{2}+ (3x - \frac {\pi}{4}) )\\ y = 3. \sin (3x+ \frac {\pi}{4} )$


Contoh 3:
Persamaan trigonometri dari grafik di atas adalah.

Pembahasan:
Langkah 1:
Perhatikan garis normal. Garis normal berada antara y=-2 dan y =6. Atau berada pada (6+-2):2 = 2. Nilai C=2 .

Langkah 2: 
Awal grafik berada di klimaks x=0. Artinya ini ialah grafik cos

Langkah 3:
Amplitudo, jarak antara garis normal hingga titik tertinggi. Artinya nilai a=4. (dari garis normal (x=2) hingga puncak (x=6))

Langkah 4:
Perhatikan gambar, di atas. nilai satu gelombang $ \pi$ sehingga:
k =$\frac {2 \pi}{Periode}$, dimana periode ialah panjang 1 gelombang. pada grafik di atas, untuk satu gelombang $ \pi$ . Artinya k =$ \frac {2 \pi}{\pi}$ = 2.

Langkah 5:
Untuk grafik cosinusdimulai di klimaks x=0. Ini memenuhi, dimana grafik pada x=0 terdapat puncak. Pergeseran b=0.

Makara dari bentuk umum:  
y= a[Trigono](kx+b)+C
y=4 cos (2x+0)+2 = 4cos (2x) +2

Sumber http://www.marthamatika.com/

Post a Comment for "Cara Memilih Persamaan Fungsi Dari Grafik Trigonometri"