Skip to content Skip to sidebar Skip to footer

Pembuktian (A-B)2 = A2-2Ab+B2

Salah satu bentuk penguraian dalam aljabar yang sering anda temui adalah, (a-b)2 = a2-2ab+b2 , kemudian bagaimana mengambarkan ini? Memang secara aljabar memang begitu seharusnya. Tetapi ini dapat dibilang agak abnormal kalau hanya mengikuti hukum aljabar.

Untuk pembuktian yang lebih real, salah satunya dapat dibuat pembuktian dalam geometris. Sekarang perhatikan gambar persegi di bawah ini. Saya mempunyai persegi / bujur kandang dengan panjang sisi a.
Lalu sisi persegi tersebut aku potong b pada sisi horizontal dan b pada sisi vertikal. Bisa digambarkan menyerupai ini.


Luas Total=a.a = a2
L(i)= (a-b)(a-b)=(a-b)2
L(ii)= b.(a-b) = ab-b2
L(iii)= (a-b).b= ab-b2
L(iv)=b.b= b2

Ltotal = L(i)+L(ii)+L(iii)+L(iv)
L(i)= Ltotal -L(ii)-L(iii)-L(iv)
(a-b)2 = a2 -(ab-b2)-(ab-b2)-b2        
(a-b)2 = a2 -ab+b2-ab+b2-b2
(a-b)2 = a2 -2ab+b2

Sekarang anda telah melihat bagaimana pembuktian dari (a-b)2 = a2 -2ab+b2 
Baca juga: Pembuktian a2+2ab+b2 
Sumber http://www.marthamatika.com/

Post a Comment for "Pembuktian (A-B)2 = A2-2Ab+B2"