Gerak Melingkar Beraturan: Definisi, Ciri, Rumus, Grafik, Pola Soal Dan Pembahasan
Jika dinding rumah atau sekolah kalian terdapat jam analog, coba kalian amati gerak tiga jenis jarum jam analog tersebut yaitu jarum detik, jarum menit dan jarum jam. Jarum detik selalu bergerak menempuh sudut 360o selama 60 sekon atau menempuh 6o selama satu detik. Jarum menit selalu menempuh sudut 360o dalam waktu 60 menit atau menempuh 6o selama satu menit. Sedangkan jarum jam selalu menempuh sudut 360o dalam waktu 24 jam.
Di dalam kinematika, contoh gerakan ketiga jarum pada jam analog di atas dinamakan gerak melingkar beraturan atau disingkat GMB. Tahukah kalian apa itu gerak lurus beraturan dan bagaimana sifat-sifatnya? Untuk menjawaban pertanyaan tersebut, silahkan kalian simak secara seksama penjelasan-penjelasan diberikut ini.
Pengertian Gerak Melingkar Beraturan
Gerak melingkar ialah gerak suatu benda yang lintasannya berupa lingkaran. Sama halnya dengan gerak lurus, pada gerak melingkar kita juga mengenal yang namanya gerak melingkar beraturan (GMB) dan gerak melingkar berubah beraturan (GMBB). Untuk gerak melingkar beraturan mempunyai dua pengertian sebagai diberikut.
Pertama, suatu benda dikatakan bergerak melingkar beraturan apabila selama benda tersebut bergerak melingkar, kecepatan linear selalu konstan atau kecepatan linear setiap pecahan benda selalu konstan. Kedua, benda dikatakan bergerak melingkar beraturan jikalau kecepatan sudut benda tersebut selalu konstan baik arah maupun nilainya. melaluiataubersamaini demikian sanggup kita simpulkan definisi dari gerak melingkar beraturan sebagai diberikut.
Gerak melingkar beraturan atau GMB yaitu gerak suatu benda pada lintasan yang berbentuk bulat dengan besar kecepatan linear (tangensial) tetap serta besar dan arah kecepatan sudut (anguler) juga tetap di setiap titik lingkaran. |
Yang perlu digarisbawahi dari definisi gerak melingkar beraturan di atas yaitu bahwa besar kecepatan tangensial tetap, tetapi arahnya tidak tetap alias selalu berubah-ubah lantaran kecepatan linear arahnya selalu menyinggung bulat dan tegak lurus dengan jari-jari. Sedangkan untuk kecepatan sudut, besar dan arahnya selalu tetap pada GMB. Yang dimaksud arah kecepatan sudut tetap yaitu searah putaran jarum jam atau berlawanan.
Ciri-Ciri Gerak Melingkar Beraturan
Masih ingatkah kalian dengan gerak lurus beraturan (GLB)? Syarat-syarat atau karakteristik GLB tersebut sanggup kalian gunakan sebagai teladan dalam memahami gerak melingkar beraturan (GMB). Berikut ini yaitu beberapa sifat atau karakteristik benda yang bergerak melingkar beraturan.
1 | Lintasan berbentuk lingkaran |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | Nilai/besar percepatan total sama dengan percepatan sentripetal (atot = as) |
Ciri-ciri gerak melingkar beraturan nomor 4 – 8 bekerjsama yaitu hasil pengembangan ciri-ciri nomor 1 – 3. Karena pada gerak melingkar beraturan intinya spesialuntuk mempunyai tiga karakteristik utama, yaitu lintasan yang berbentuk lingkaran, besar kecepatan linear (tangensial) tetap serta besar dan arah kecepatan sudut (anguler) yang tetap. Namun pengembangan ciri-ciri tersebut kadang dibutuhkan untuk menuntaskan duduk masalah fisika yang berafiliasi dengan gerak melingkar.
Rumus Pada Gerak Melingkar Beraturan
Dari sifat atau karakteristik gerak melingkar beraturan (GMB) nomor 4 di atas, maka kita sanggup menurunkan persamaan sebagai diberikut:
ω | = | tetap |
ω | = | ∆θ | ||
∆t | ||||
ω | = | θ − θ0 | ||
t − 0 | ||||
θ | = | θ0 + ωt | ………… pers. (1) |
Keterangan:
θ | = | posisi sudut (rad) |
θ0 | = | posisi sudut awal (rad) |
ω | = | kecepatan sudut pada (rad/s) |
t | = | waktu (s) |
Jika kita perhatikan, persamaan posisi sudut pada gerak melingkar beraturan di atas ibarat dengan persamaan jarak pada gerak lurus beraturan yaitu sebagai diberikut:
s | = | s0 + vt | ………… pers. (2) |
Keterangan:
s | = | jarak (m) |
s0 | = | jarak awal (m) |
v | = | kecepatan (m/s) |
t | = | waktu (s) |
melaluiataubersamaini demikian sanggup dikatakan bahwa rumus pada gerak melingkar beraturan (GMB) itu sama dengan rumus pada gerak lurus beraturan spesialuntuk saja pada gerak melingkar beraturan, bemasukan-bemasukan linear pada gerak lurus beraturan kita ganti dengan bemasukan-bemasukan sudut (anguler). Jarak (s) kita ganti dengan posisi sudut (θ) dan kecepatan linear (v) kita ganti dengan kecepatan sudut (ω). Konsep ini juga berlaku pada gerak melingkar berubah beraturan (GMBB).
Macam-Macam Grafik pada Gerak Melingkar Beraturan
Kita tahu bahwa dalam gerak melingkar terdapat dua jenis bemasukan fisika yang mempengaruhi gerak benda, yaitu bemasukan linear dan bemasukan sudut. Oleh alasannya yaitu itu, grafik gerak melingkar ada banyak jenisnya diantaranya grafik kekerabatan panjang lintasan terhadap waktu (grafik s-t), grafik posisi sudut terhadap waktu (grafik θ-t), grafik kecepatan linear terhadap waktu (grafik v-t), grafik kecepatan sudut terhadap waktu (grafik ω-t), grafik percepatan tangensial terhadap waktu (grafik at-t) dan grafik percepatan sudut terhadap waktu (grafik α-t).
Tetapi perlu kalian ketahui bahwa grafik pada gerak melingkar spesialuntuk sanggup mendeskripsikan nilai bemasukan. Karena ibarat yang kita tahu bahwa bemasukan vektor pada gerak melingkar ibarat kecepatan linear arahnya selalu berubah-ubah, kadang ke atas, ke bawah, ke kanan, atau ke kiri. Sehingga untuk arah bemasukan, grafik kurang efektif untuk menggambarkan arah gerak. Lalu bagaimana bentuk grafik GMB? Secara umum bentuk kurva gerak melingkar sama dengan gerak lurus. |
#1 Grafik s-t dan Grafik θ-t pada Gerak Melingkar Beraturan
Coba kalian perhatikan kurva grafik s-t dengan grafik θ-t di atas. Kenapa kemienteng kurva θ-t lebih rendah dibandingkan dengan kemienteng kurva grafik s-t? Kalian tentunya sudah tahu rumus kekerabatan bemasukan linear dangan bemasukan sudut. rumus panjang lintasan adalah s = θR sehingga θ = s/R oleh lantaran itu dalam selang waktu yang sama (t) panjang lintasan yang ditempuh benda lebih besar daripada sudut tempuhnya.
#2 Grafik v-t dan Grafik ω-t pada Gerak Melingkar Beraturan
Karena kecepatan linear (v) dan kecepatan sudut (ω) dalam gerak melingkar beraturan besarnya yaitu tetap, maka bentuk kurva pada grafik yaitu lurus horizontal sejajar sumbu t. Lalu jikalau kalian perhatikan kurva kedua grafik di atas, kurva v posisinya lebih tinggi dari pada kurva ω, hal ini disebabkan lantaran rumus v = ωR sehingga ω = v/R oleh lantaran itu dalam gerak melingkar besar kecepatan linear (tangensial) akan lebih besar dari kecepatan sudut (anguler).
#3 Grafik at-t dan Grafik α-t pada Gerak Melingkar Beraturan
Telah terang bahwa dalam gerak melingkar beraturan besar kecepatan linear dan kecepatan sudutnya yaitu tetap maka besar percepatan linear dan percepatan sudutnya yaitu nol. Karena percepatan spesialuntuk ada jikalau terdapat perubahan kecepatan dengan kata lain jikalau kecepatan tetap maka perubahan kecepatan sama dengan nol.
misal Soal GMB dan Pembahasannya
misal Soal 1
Sebuah partikel bergerak melingkar beraturan dengan posisi sudut awal 5 rad. Jika partikel bergerak dengan kecepatan sudut 10 rad/s, tentukan posisi sudut selesai pada ketika t = 5 s.
Penyelesaian
θ0 = 5 rad
ω = 10 rad/s
t = 5 s
maka
θ = θ0 + ωt
θ = 5 + (10 × 5)
θ = 55 rad
jadi, posisi sudut selesai partikel tersebut yaitu 55 rad.
misal Soal 2
Sebuah roda berputar dengan kecepatan sudut tetap 120 rpm. Jari-jari roda 50 cm. Maka tentukanlah :
- sudut yang ditempuh roda dalam waktu 5 sekon
- panjang lintasan yang dilalui benda yang berada di tepi roda dalam waktu 5 detik
- kecepatan linear benda yang berada di tepi roda
penyelesaian
ω = 120 rpm = 120 × 2π/60 = 4π rad/s
R = 50 cm = 0,5 m
t = 5 s
maka
- sudut yang ditempuh (θ)
θ = θ0 + ωt
θ = 0 + (4π × 5)
θ = 20π rad
- panjang lintasan (s)
s = θR
s = 20π × 0,5
s = 10π m
- kecepatan linear benda (v)
v = ωR
v = 4π × 0,5
v = 2π m/s
Demikianlah artikel ihwal pengertian, rumus dan grafik gerak melingkar beraturan (GMB) beserta contoh soal dan pembahasannya. Semoga sanggup bermanfaa untuk Anda. Terimakasih atas kunjungannya dan hingga berjumpa di artikel diberikutnya.
Sumber https://www.fisikabc.com/
Post a Comment for "Gerak Melingkar Beraturan: Definisi, Ciri, Rumus, Grafik, Pola Soal Dan Pembahasan"