Skip to content Skip to sidebar Skip to footer

Kumpulan Rumus Tegangan Tali Pada Dinamika Gerak Melingkar Lengkap

Jika dalam artikel sebelumnya sudah uraikan terkena kumpulan rumus gaya sentripetal pada dinamika gerak melingkar lengkap maka pada peluang kali ini, penulis akan memaparkan wacana kumpulan rumus gaya tegangan tali. Namun sebelum itu, tahukan kalian apa itu gaya tegangan tali? Gaya tegangan tali atau dalam bahasa abnormal disebut Tension force adalah gaya pada tali ketika tali tersebut dalam keadaan tegang. Gaya tegangan tali ini dilambangkan dengan huruf T kapital.

Ketika sebuah benda diikatkan pada ujung seutas tali kemudian ujung tali lainnya diputar, maka benda akan bergerak melingkar mengikuti lintasan yang dibuat putaran tali. Apabila tali diputar secara horizontal ataupun diputar membentuk lintasan kerucut (ayunan konis), maka besar gaya tegangan tali akan sama di setiap titik lintasan. Namun, kalau tali diputar secara vertikal, besar tegangan tali di setiap titik lintasan tidak sama-beda.

Perbedaan ini timbul akhir terjadinya perubahan arah gaya tegangan tali dan gaya berat benda pada ketika tali dan benda berputar. Berikut ini akan dibahas terkena rumus untuk memilih besar gaya tegangan tali pada aneka macam kondisi yang sering muncul dalam soal fisika khususnya materi mekanika. Untuk itu, silahkan kalian simak secara seksama klarifikasi diberikut ini.

#1 Rumus Tegangan Tali di Titik Tertinggi
Jika dalam artikel sebelumnya sudah uraikan terkena  Kumpulan Rumus Tegangan Tali Pada Dinamika Gerak Melingkar Lengkap
Ketika sebuah benda diikatkan pada tali kemudian tali diputar secara vertikal, maka benda akan bergerak melingkar mengikuti putaran tali. Ketika benda bergerak melingkar, tentu tali dalam keadaan tegang sehingga timbullah gaya tegangan tali. Gaya tegangan tali ini berkhasiat untuk menahan benda yang berputar biar tidak terlempar ke luar.

Karena pada kasus ini, gaya tegangan tali berperan sebagai gaya sentripetal, maka arah gaya tegangan tali selalu menuju sentra lingkaran. Gambar di atas mengatakan diagram gaya yang bekerja pada benda bermassa m ketika berada di titik A atau titik tertinggi. Di titik tertinggi, arah gaya berat juga menuju sentra bundar sama menyerupai gaya tegangan tali, sehingga pada titik ini persamaan gerak berdasarkan Hukum II Newton ialah sebagai diberikut.

ΣFs = mas
TA + w = mas
TA + w = mv2/R
TA = mv2/R  w
Karena v2/R = ω2R maka
TA = mω2 w
melaluiataubersamaini demikian, besarnya gaya tegangan tali di titik tertinggi sanggup dihitung dengan memakai rumus sebagai diberikut
TA
=
mv2
w
R

TA
=
2 w

Keterangan:
TA
=
Tegangan tali di titik A (N)
w
=
Berat benda (N)
m
=
Massa benda (kg)
v
=
Kecepatan linear (m/s)
ω
=
Kecepatan sudut (rad/s)
R
=
Jari-jari lintasan (m)

#2 Rumus Tegangan Tali di Titik Atas Membentuk Sudut
Jika dalam artikel sebelumnya sudah uraikan terkena  Kumpulan Rumus Tegangan Tali Pada Dinamika Gerak Melingkar Lengkap
Ketika benda mencapai titik B yang membentuk sudut θ terhadap garis vertikal, maka garis-garis gaya yang bekerja pada benda diperlihatkan menyerupai gambar di atas. melaluiataubersamaini memakai metode penguraian vektor, gaya berat mempunyai 2 komponen yaitu wY­ yang bekerja pada sumbu-Y (dalam hal ini tali sebagai sumbu-Y) dan wX yang bekerja pada sumbu-X (dalam hal ini perpantidakboleh garis vektor v sebagai sumbu-X).

Dari gambar garis-garis gaya tersebut, komponen gaya yang bekerja dalam arah radial (berhimpit dengan jari-jari lingkaran) ialah gaya tegangan tali TB dan komponen gaya berat pada sumbu-Y atau wY dengan arah yang sama. melaluiataubersamaini demikian, persamaan gerak benda di titik B berdasarkan Hukum II Newton ialah sebagai diberikut.

ΣFs = mas
TB + wY = mas
TB + wY = mv2/R
T= mv2/R  wY
Karena w= w cos θ dan v2/R = ω2R maka
T= mv2/R  w cos θ atau
T= mω2R  w cos θ
melaluiataubersamaini demikian, besarnya gaya tegangan tali di titik atas yang membentuk sudut tertentu sanggup ditentukan dengan memakai rumus sebagai diberikut
TB
=
mv2
w cos θ
R

TB
=
2 w cos θ

Keterangan:
TB
=
Tegangan tali di titik B (N)
w
=
Berat benda (N)
m
=
Massa benda (kg)
v
=
ω
=
Kecepatan sudut (rad/s)
R
=
Jari-jari lintasan (m)
θ
=
Sudut antara tali dan garis vertikal

#3 Rumus Tegangan Tali di Titik Tengah
Jika dalam artikel sebelumnya sudah uraikan terkena  Kumpulan Rumus Tegangan Tali Pada Dinamika Gerak Melingkar Lengkap
Ketika benda berada di titik C atau titik tengah, maka benda dikatakan berada dalam posisi seimbang. Pada posisi ini, komponen gaya yang bekerja dalam arah radial spesialuntuklah gaya tegangan tali saja, sebab gaya berat w bekerja tegak lurus terhadap gaya tegangan tali. Berdasarkan Hukum II Newton, maka persamaan gerak pada titik ini ialah sebagai diberikut.

ΣFs = mas
TC = mas
TC = mv2/R
Karena v2/R = ω2R maka
T= mω2R
melaluiataubersamaini demikian, besarnya gaya tegangan tali di titik tengah sanggup dihitung dengan memakai rumus sebagai diberikut
TC
=
mv2
R

TC
=
2R

Keterangan:
TC
=
Tegangan tali di titik C (N)
m
=
Massa benda (kg)
v
=
Kecepatan linear (m/s)
ω
=
R
=
Jari-jari lintasan (m)

#4 Rumus Tegangan Tali di Titik Bawah Membentuk Sudut
Jika dalam artikel sebelumnya sudah uraikan terkena  Kumpulan Rumus Tegangan Tali Pada Dinamika Gerak Melingkar Lengkap
Sama halnya menyerupai posisi benda di titik B, pada ketika benda berada di titik D, gaya berat yang bekerja pada benda juga mempunyai 2 komponen yaitu wYdan wX. Diagram gaya-gaya yang bekerja pada benda ditunjukkan pada gambar di atas. Berdasarkan gambar diagram tersebut, komponen gaya yang bekerja pada arah radial ialah gaya tegangan tali dan gaya berat wY. Namun, kali ini kedua gaya tersebut arahnya saling berlawanan.

Dalam gerak melingkar, komponen gaya yang bekerja menuju sentra bundar berharga kasatmata sedangkan gaya yang bekerja menjauhi sentra bundar berharga negatif. Karena gaya berat wY arahnya menjauhi sentra lingkaran, maka wberharga negatif. melaluiataubersamaini demikian, persamaan gerak benda di titik D berdasarkan Hukum II Newton ialah sebagai diberikut.

ΣFs = mas
TD  wY = mas
TD  wY = mv2/R
T= mv2/R + wY
Karena w= w cos θ dan v2/R = ω2R maka
T= mv2/R + w cos θ atau
T= mω2R + w cos θ
melaluiataubersamaini demikian, besarnya gaya tegangan tali di titik bawah yang membentuk sudut tertentu sanggup ditentukan dengan memakai rumus sebagai diberikut
TD
=
mv2
+
w cos θ
R

TD
=
2R + w cos θ

Keterangan:
TD
=
Tegangan tali di titik D (N)
w
=
Berat benda (N)
m
=
Massa benda (kg)
v
=
Kecepatan linear (m/s)
ω
=
Kecepatan sudut (rad/s)
R
=
Jari-jari lintasan (m)
θ
=
Sudut antara tali dan garis vertikal

#5 Rumus Tegangan Tali di Titik Terendah
Jika dalam artikel sebelumnya sudah uraikan terkena  Kumpulan Rumus Tegangan Tali Pada Dinamika Gerak Melingkar Lengkap
Pada ketika benda mencapati titik terendah, arah gaya berat w dan tegangan talinya akan berlawanan arah menyerupai yang diperlihatkan pada gambar di atas. Karena arah gaya berat melawan arah gaya tegangan tali, maka gaya tegangan tali akan semakin besar untuk mengimbangi gaya berat. Oleh sebab itu, pada titik terendah besar gaya tegangan tali ialah tegangan tali maksimum. Berdasarkan Hukum II Newton, kita peroleh persamaan sebagai diberikut.
ΣFs = mas
TD  w = mas
TD  w = mv2/R
TD = mv2/R + w
Karena v2/R = ω2R maka
TD = mω2R + w
melaluiataubersamaini demikian, besarnya gaya tegangan tali di titik terendah sanggup kita tentukan dengan memakai rumus sebagai diberikut
TD
=
mv2
+
w
R

TD
=
2R + w

Keterangan:
TD
=
Tegangan tali di titik D (N)
w
=
Berat benda (N)
m
=
Massa benda (kg)
v
=
Kecepatan linear (m/s)
ω
=
Kecepatan sudut (rad/s)
R
=
Jari-jari lintasan (m)

#6 Rumus Tegangan Tali Pada Benda yang Diputar Horizontal
Jika dalam artikel sebelumnya sudah uraikan terkena  Kumpulan Rumus Tegangan Tali Pada Dinamika Gerak Melingkar Lengkap
Ketika tali diputar secara horizontal, maka komponen gaya yang bekerja dalam arah radial spesialuntuklah gaya tegangan tali sehingga besar gaya tegangan tali di tiruana titik sepanjang lintasan bundar akan sama besar. Secara matematis, persamaan gerak benda pada kondisi ini ialah sebagai diberikut.

ΣFs = mas
T = mas
T = mv2/R
Karena v2/R = ω2R maka
T = mω2R
melaluiataubersamaini demikian, besarnya gaya tegangan tali di titik tengah sanggup dihitung dengan memakai rumus sebagai diberikut
T
=
mv2
R

T
=
2R

Keterangan:
T
=
Tegangan tali (N)
m
=
Massa benda (kg)
v
=
Kecepatan linear (m/s)
ω
=
Kecepatan sudut (rad/s)
R
=
Jari-jari lintasan (m)

#7 Rumus Tegangan Tali Pada Ayunan Konis
Jika dalam artikel sebelumnya sudah uraikan terkena  Kumpulan Rumus Tegangan Tali Pada Dinamika Gerak Melingkar Lengkap
Ketika tali diputar secara horizontal dengan sudut kemienteng θ membentuk lintasan kerucut atau biasa disebut ayunan konis (konikal), maka gaya tegangan tali T tidak bekerja dalam arah radial. Meskipun tidak bekerja dalam arah radial, tetapi gaya tegangan tali T mempunyai dua komponen yaitu TY dan TX di mana TX ini bekerja dalam arah radial.

Pada kondisi ini, besarnya gaya tegangan tali sanggup ditentukan dengan 2 cara, yaitu dengan menguraikan gaya pada arah sumbu-Y dan menguraikan gaya pada arah radial. Akan tetapi, pada arah radial spesialuntuk bekerja satu gaya yaitu TX sehingga gaya ini ialah gaya tunggal yang berperan sebagai gaya sentripetal. Berdasarkan Hukum II Newton, persamaan gerak benda pada ayunan konis ialah sebagai diberikut.

ΣFY = ma
TY  w = ma
Karena tidak ada gerak dalam arah vertikal, maka a = 0 sehingga
TY  w = 0
TY = w
TY = w
Besar TY = T cos θ sehingga
T cos θ = w
T = w/cos θ

ΣFs = mas
TX = mas
TX = mv2/R
Karena TX = T sin θ dan v2/R = ω2R maka
T sin θ = mv2/R atau T sin θ = mω2R
T = mv2/R sin θ atau T = mω2R/sin θ
melaluiataubersamaini demikian, rumus gaya tegangan tali pada benda yang diputar membentuk ayunan konis ialah sebagai diberikut
T
=
mv2
sin θ

T
=
2R
sin θ

Keterangan:
T
=
Tegangan tali (N)
m
=
Massa benda (kg)
v
=
Kecepatan linear (m/s)
ω
=
Kecepatan sudut (rad/s)
R
=
Jari-jari lintasan (m)
θ
=
Sudut awal kerucut

Demikianlah artikel wacana kumpulan rumus lengkap gaya tegangan tali pada dinamika gerak melingkar beserta gambar ilustrasi dan garis-garis gayanya. Semoga sanggup bermanfaa untuk Anda. Apabila terdapat kesalahan dalam penulisan tanda, simbol, abjad ataupun angka, mohon informasikan kepada kami via Contact Us. Terimakasih atas kunjungannya dan hingga jumpa di artikel diberikutnya.

Sumber https://www.fisikabc.com/

Post a Comment for "Kumpulan Rumus Tegangan Tali Pada Dinamika Gerak Melingkar Lengkap"