Pembuktian Rumus Turunan Tan X
Anda yang hingga pada halaman ini niscaya yakni orang jenius yang ingin tahu kenapa turunan tan x yakni sec2 x? Darimana datangnya rumus turunan tan x=sec 2x (asumsi turunan terhadap x).
Turunan secara pendekatan limit dapat ditulis, $$ f^\prime (x) = \displaystyle \lim_{ h \to 0 } \frac{f(x+ h ) - f(x)}{h} \\ \text {dengan catatan nilai limit harus ada} $$
Disini juga akan dipakai beberapa rumus trigonometri yaitu,
sin (A+B) = sin A cos B + cos A sin B.
cos (A+B) = cos A cos B-sin A sin B
Identitas trigonometri $$ \cos ^2 x + \sin ^2 x = 1 \\ \tan A = \frac{\sin A}{\cos A} \\ \sec A = \frac{1}{\cos A } $$
Mari kita mulai mengambarkan turunan tan adalah,
$$ \text {misal } f(x) = \tan x \\ \text {sesuai identitas} \\ f(x) = \frac{\sin x}{\cos x} \\ \text {maka } \\ f(x+h) = \frac{\sin (x+h)}{\cos (x+h)} \\ f(x+h) = \frac{\sin x \cos h + \cos x \sin h}{\cos x \cos h - \sin x \sin h} $$
Silahkan pahami sejenak peneggunaan identitas trigonometri di atas. Jika sudah tidak lagi berkerut kening Anda, kita lanjutkan.
$$ f^\prime (x) = \displaystyle \lim_{h \to 0 } \frac{f(x+h) - f(x) }{h} \\ = \displaystyle \lim_{h \to 0 } \frac{ \frac{\sin x \cos h + \cos x \sin h}{\cos x \cos h - \sin x \sin h} - \frac{\sin x}{\cos x} }{h} \\ = \displaystyle \lim_{h \to 0 } \frac{ \frac{\cos x(\sin x \cos h + \cos x \sin h) - \sin x( \cos x \cos h - \sin x \sin h ) }{\cos x (\cos x \cos h - \sin x \sin h ) } }{h} \\ = \displaystyle \lim_{h \to 0 } \frac{ \cos x \sin x \cos h + \cos ^2 x \sin h - \cos x \sin x \cos h + \sin ^2 x \sin h }{h\cos x (\cos x \cos h - \sin x \sin h ) } $$
$$ = \displaystyle \lim_{h \to 0 } \frac{ \cos ^2 x \sin h + \sin ^2 x \sin h }{h\cos x (\cos x \cos h - \sin x \sin h ) } \\ = \displaystyle \lim_{h \to 0 } \frac{ (\cos ^2 x + \sin ^2 x ) \sin h }{h\cos x (\cos x \cos h - \sin x \sin h ) } \, \, \, \, \, \text{(identitas)} \\ = \displaystyle \lim_{h \to 0 } \frac{ ( 1 ) \sin h }{h\cos x (\cos x \cos h - \sin x \sin h ) } \\ = \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h\cos x (\cos x \cos h - \sin x \sin h ) } \\ = \displaystyle \lim_{h \to 0 } \frac{ \frac{ \sin h }{h} }{\cos x (\cos x \cos h - \sin x \sin h ) } $$
$$ = \frac{ \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} }{ \displaystyle \lim_{h \to 0 } \cos x (\cos x \cos h - \sin x \sin h ) } \\ = \frac{ \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} }{ \displaystyle \lim_{h \to 0 } \cos x \displaystyle \lim_{h \to 0 } (\cos x \cos h - \sin x \sin h ) } \\ = \frac{ 1 }{ \cos x . (\cos x \cos 0 - \sin x \sin 0 ) } \\ = \frac{ 1 }{ \cos x . (\cos x 1 - \sin x .0 ) } \\ = \frac{ 1 }{ \cos x . (\cos x - 0 ) } \\ = \frac{ 1 }{ \cos x . (\cos x ) } \\ = \frac{ 1 }{ \cos x } . \frac{ 1 }{ \cos x } \\ = \sec x . \sec x \\ = \sec ^2 x $$
Itulah mengapa turunan dari tan x =sec 2x. Baca juga pembuktian rumus turunan lain:
Sumber http://www.marthamatika.com/
Turunan secara pendekatan limit dapat ditulis, $$ f^\prime (x) = \displaystyle \lim_{ h \to 0 } \frac{f(x+ h ) - f(x)}{h} \\ \text {dengan catatan nilai limit harus ada} $$
Disini juga akan dipakai beberapa rumus trigonometri yaitu,
sin (A+B) = sin A cos B + cos A sin B.
cos (A+B) = cos A cos B-sin A sin B
Identitas trigonometri $$ \cos ^2 x + \sin ^2 x = 1 \\ \tan A = \frac{\sin A}{\cos A} \\ \sec A = \frac{1}{\cos A } $$
Mari kita mulai mengambarkan turunan tan adalah,
$$ \text {misal } f(x) = \tan x \\ \text {sesuai identitas} \\ f(x) = \frac{\sin x}{\cos x} \\ \text {maka } \\ f(x+h) = \frac{\sin (x+h)}{\cos (x+h)} \\ f(x+h) = \frac{\sin x \cos h + \cos x \sin h}{\cos x \cos h - \sin x \sin h} $$
Silahkan pahami sejenak peneggunaan identitas trigonometri di atas. Jika sudah tidak lagi berkerut kening Anda, kita lanjutkan.
$$ f^\prime (x) = \displaystyle \lim_{h \to 0 } \frac{f(x+h) - f(x) }{h} \\ = \displaystyle \lim_{h \to 0 } \frac{ \frac{\sin x \cos h + \cos x \sin h}{\cos x \cos h - \sin x \sin h} - \frac{\sin x}{\cos x} }{h} \\ = \displaystyle \lim_{h \to 0 } \frac{ \frac{\cos x(\sin x \cos h + \cos x \sin h) - \sin x( \cos x \cos h - \sin x \sin h ) }{\cos x (\cos x \cos h - \sin x \sin h ) } }{h} \\ = \displaystyle \lim_{h \to 0 } \frac{ \cos x \sin x \cos h + \cos ^2 x \sin h - \cos x \sin x \cos h + \sin ^2 x \sin h }{h\cos x (\cos x \cos h - \sin x \sin h ) } $$
$$ = \displaystyle \lim_{h \to 0 } \frac{ \cos ^2 x \sin h + \sin ^2 x \sin h }{h\cos x (\cos x \cos h - \sin x \sin h ) } \\ = \displaystyle \lim_{h \to 0 } \frac{ (\cos ^2 x + \sin ^2 x ) \sin h }{h\cos x (\cos x \cos h - \sin x \sin h ) } \, \, \, \, \, \text{(identitas)} \\ = \displaystyle \lim_{h \to 0 } \frac{ ( 1 ) \sin h }{h\cos x (\cos x \cos h - \sin x \sin h ) } \\ = \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h\cos x (\cos x \cos h - \sin x \sin h ) } \\ = \displaystyle \lim_{h \to 0 } \frac{ \frac{ \sin h }{h} }{\cos x (\cos x \cos h - \sin x \sin h ) } $$
$$ = \frac{ \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} }{ \displaystyle \lim_{h \to 0 } \cos x (\cos x \cos h - \sin x \sin h ) } \\ = \frac{ \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} }{ \displaystyle \lim_{h \to 0 } \cos x \displaystyle \lim_{h \to 0 } (\cos x \cos h - \sin x \sin h ) } \\ = \frac{ 1 }{ \cos x . (\cos x \cos 0 - \sin x \sin 0 ) } \\ = \frac{ 1 }{ \cos x . (\cos x 1 - \sin x .0 ) } \\ = \frac{ 1 }{ \cos x . (\cos x - 0 ) } \\ = \frac{ 1 }{ \cos x . (\cos x ) } \\ = \frac{ 1 }{ \cos x } . \frac{ 1 }{ \cos x } \\ = \sec x . \sec x \\ = \sec ^2 x $$
Itulah mengapa turunan dari tan x =sec 2x. Baca juga pembuktian rumus turunan lain:
Sumber http://www.marthamatika.com/
Post a Comment for "Pembuktian Rumus Turunan Tan X"