Skip to content Skip to sidebar Skip to footer

Pembuktian Rumus Turunan Tan X

Anda yang hingga pada halaman ini niscaya yakni orang jenius yang ingin tahu kenapa turunan tan x yakni sec2 x? Darimana datangnya rumus turunan tan x=sec 2x (asumsi turunan terhadap x).

Turunan secara pendekatan limit dapat ditulis, $$ f^\prime (x) = \displaystyle \lim_{ h \to 0 } \frac{f(x+ h ) - f(x)}{h} \\ \text {dengan catatan nilai limit harus ada} $$

Disini juga akan dipakai beberapa rumus trigonometri yaitu,
sin (A+B) = sin A cos B + cos A sin B.
cos (A+B) = cos A cos B-sin A sin B

Identitas trigonometri $$ \cos ^2 x + \sin ^2 x = 1 \\ \tan A = \frac{\sin A}{\cos A} \\ \sec A = \frac{1}{\cos A } $$
Mari kita mulai mengambarkan turunan tan adalah,
$$ \text {misal } f(x) = \tan x \\ \text {sesuai identitas} \\ f(x) = \frac{\sin x}{\cos x} \\ \text {maka } \\ f(x+h) = \frac{\sin (x+h)}{\cos (x+h)} \\ f(x+h) = \frac{\sin x \cos h + \cos x \sin h}{\cos x \cos h - \sin x \sin h} $$
Silahkan pahami sejenak peneggunaan identitas trigonometri di atas. Jika sudah tidak lagi berkerut kening Anda, kita lanjutkan.
$$ f^\prime (x) = \displaystyle \lim_{h \to 0 } \frac{f(x+h) - f(x) }{h} \\ = \displaystyle \lim_{h \to 0 } \frac{ \frac{\sin x \cos h + \cos x \sin h}{\cos x \cos h - \sin x \sin h} - \frac{\sin x}{\cos x} }{h} \\ = \displaystyle \lim_{h \to 0 } \frac{ \frac{\cos x(\sin x \cos h + \cos x \sin h) - \sin x( \cos x \cos h - \sin x \sin h ) }{\cos x (\cos x \cos h - \sin x \sin h ) } }{h} \\ = \displaystyle \lim_{h \to 0 } \frac{ \cos x \sin x \cos h + \cos ^2 x \sin h - \cos x \sin x \cos h + \sin ^2 x \sin h }{h\cos x (\cos x \cos h - \sin x \sin h ) } $$

$$ = \displaystyle \lim_{h \to 0 } \frac{ \cos ^2 x \sin h + \sin ^2 x \sin h }{h\cos x (\cos x \cos h - \sin x \sin h ) } \\ = \displaystyle \lim_{h \to 0 } \frac{ (\cos ^2 x + \sin ^2 x ) \sin h }{h\cos x (\cos x \cos h - \sin x \sin h ) } \, \, \, \, \, \text{(identitas)} \\ = \displaystyle \lim_{h \to 0 } \frac{ ( 1 ) \sin h }{h\cos x (\cos x \cos h - \sin x \sin h ) } \\ = \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h\cos x (\cos x \cos h - \sin x \sin h ) } \\ = \displaystyle \lim_{h \to 0 } \frac{ \frac{ \sin h }{h} }{\cos x (\cos x \cos h - \sin x \sin h ) } $$
$$ = \frac{ \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} }{ \displaystyle \lim_{h \to 0 } \cos x (\cos x \cos h - \sin x \sin h ) } \\ = \frac{ \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} }{ \displaystyle \lim_{h \to 0 } \cos x \displaystyle \lim_{h \to 0 } (\cos x \cos h - \sin x \sin h ) } \\ = \frac{ 1 }{ \cos x . (\cos x \cos 0 - \sin x \sin 0 ) } \\ = \frac{ 1 }{ \cos x . (\cos x 1 - \sin x .0 ) } \\ = \frac{ 1 }{ \cos x . (\cos x - 0 ) } \\ = \frac{ 1 }{ \cos x . (\cos x ) } \\ = \frac{ 1 }{ \cos x } . \frac{ 1 }{ \cos x } \\ = \sec x . \sec x \\ = \sec ^2 x $$
Itulah mengapa turunan dari tan x =sec 2x. Baca juga pembuktian rumus turunan lain:
  1. Pembuktian Rumus Turunan Sinus (sin)
  2. Pembuktian Rumus Turunan Cosinus (cos)
  3. Pembuktian Rumus Turunan Tangen (tan)
  4. Pembuktian Rumus Turunan Cotangen (cotan)
  5. Pembuktian Rumus Turunan Secan (sec)
  6. Pembuktian Rumus Turunan Cosec (cosec)

Sumber http://www.marthamatika.com/

Post a Comment for "Pembuktian Rumus Turunan Tan X"