Skip to content Skip to sidebar Skip to footer

Contoh Aplikasi Matriks Dalam Penyelesaian Persamaan Linear

Pada halaman ini aku akan berikan beberapa referensi soal dan penyelesaian ihwal penggunaan matriks untuk menuntaskan persamaan linear baik 2 variabel ataupun 3 variabel. Semoga soal dan pembahasan matriks di bawah ini dapat membantu.

Namun sebelumnya, pastikan anda telah memahami ihwal Invers Matriks, Determinan Matriks.

#Soal 1. Diketahui persamaan linear
2x-3y=p
3x+2y=q $$x= \frac {a}{\begin{vmatrix} 2 & -3\\ 3 & 2 \end{vmatrix}}$$
nilai a yang memenuhi adalah...
a) -3p+2q     b) 2p-3q    c) 2p+3q      d) 3p-2q      e) 3p+2q

Pembahasan:
$ \text {x menurut diketahui } \\ x= \frac {a}{\begin{vmatrix} 2 & -3\\ 3 & 2 \end{vmatrix}} \\  \text {sementara menurut persamaan } \\  x= \frac {D_x}{D} \\ x= \frac {\begin{vmatrix} p & -3\\ q &2 \end{vmatrix}}{\begin{vmatrix} 2 & -3\\ 3 &2 \end{vmatrix}} \\ \text {selanjutnya disamakan } \\ x=x \\ \frac {a}{\begin{vmatrix} 2 & -3\\ 3 & 2 \end{vmatrix}} =  \frac {\begin{vmatrix} p & -3\\ q &2 \end{vmatrix}}{\begin{vmatrix} 2 & -3\\ 3 &2 \end{vmatrix}} \\ a= \begin{vmatrix} p & -3\\ q &2 \end{vmatrix} \\ a=2p-3q $

#Soal 2. Persamaan Linear
2x-3y-3=0
4x-y+7=0 $$y= \frac {a}{\begin{vmatrix} 2 & 3\\ 4 & -1 \end{vmatrix}}$$ Nilai a yang memenuhi adalah...
a) -26    b) -19    c) -2   d) 2    e) 26

Pembahasan:
$2x-3y-3=0 \rightarrow 2x-3y=3 \\ 4x-y+7=0 \rightarrow 4x-y=-7 \\ y= \frac {\begin{vmatrix} 2 & 3\\   4&  -7 \end{vmatrix}}{\begin{vmatrix} 2 &3 \\   4& -1 \end{vmatrix}}= \frac {a}{\begin{vmatrix} 2 &3 \\   4& -1 \end{vmatrix}} \\ a= \begin{vmatrix} 2 & 3\\   4&  -7 \end{vmatrix} \\ a= 2.-7 -4.3 =-14-12=-26$

#Soal 3. Jika x dan y memenuhi persamaan matriks:
$\begin{pmatrix} p &q \\ q &p \end{pmatrix} \begin{pmatrix} x \\ y\end{pmatrix}= \begin{pmatrix} p \\ q\end{pmatrix} \, \, p \neq q$
Maka nilai x+2y=...
a) -6   b) -1   c) 0    d) 1    e) 2

Pembahasan:
$\begin{pmatrix} p &q \\ q &p \end{pmatrix} \begin{pmatrix} x \\ y\end{pmatrix}= \begin{pmatrix} p \\ q\end{pmatrix} \\ \text {misal } \\  A=\begin{pmatrix} p &q \\ q &p \end{pmatrix} \\ B= \begin{pmatrix} x \\ y\end{pmatrix} \\ C= \begin{pmatrix} p \\ q\end{pmatrix} \\ AB=C \\ A^{-1}AB=A^{-1}C \\ IB=A^{-1}C \\ B=A^{-1}C$
  $A=\begin{pmatrix} p &q \\ q &p \end{pmatrix} \\ B= \begin{pmatrix} x \\ y\end{pmatrix} \\ C= \begin{pmatrix} p \\ q\end{pmatrix} \\ AB=C \\ A^{-1}AB=A^{-1}C \\ IB=A^{-1}C \\ B=A^{-1}C \\ B = \frac {1}{p^2-q^2} \begin{pmatrix} p & -q \\ -q &p \end{pmatrix} \begin{pmatrix} p \\ q\end{pmatrix} \\ B= \frac {1}{p^2-q^2} \begin{pmatrix} p^2-q^2  \\ -pq+pq \end{pmatrix} \\ B=\begin{pmatrix} 1  \\ 0 \end{pmatrix} \\ \begin{pmatrix} x  \\ y \end{pmatrix}=\begin{pmatrix} 1  \\ 0 \end{pmatrix} \\ x= 1 \,\, y=0 \\ 2x+y = 2.1+0=2$

#Soal 4. Konstanta k yang memenuhi persamaan:
  $\begin{pmatrix} k &1 \\ 1 &0 \end{pmatrix}  \begin{pmatrix} x-1 \\ y-1 \end{pmatrix} = \begin{pmatrix} 0 \\ k\end{pmatrix} $
Nilai x+y adalah...
a) (2+k)(k+1)
b) (2-k) (k+1)
c) (2-k) (1-k)
d) (k+1)(1-k)
e) (2+k)(1-k)

Pembahasan:
$\begin{pmatrix} k &1 \\ 1 &0 \end{pmatrix}  \begin{pmatrix} x-1 \\ y-1 \end{pmatrix} = \begin{pmatrix} 0 \\ k\end{pmatrix} \\ \text {misal } \\ A= \begin{pmatrix} k &1 \\ 1 &0 \end{pmatrix} \\ B=\begin{pmatrix} x-1 \\ y-1 \end{pmatrix} \\ C= \begin{pmatrix} 0 \\ k\end{pmatrix} \\ AB=C \\ A^{-1}AB=A^{-1}C \\ IB=A^{-1}C \\ B= \frac {1}{k.0-1.1} \begin{pmatrix} 0 &-1 \\ -1 &k \end{pmatrix}\begin{pmatrix} 0 \\ k\end{pmatrix} \\ B=\begin{pmatrix} -k \\ k^2\end{pmatrix} \\ \begin{pmatrix} x-1 \\ y-1\end{pmatrix}=\begin{pmatrix} -k \\ k^2\end{pmatrix} \\ x-1 =-k \, \, y-1 =k^2 \\ x=-k+1 \,\, y=k^2+1 \\ x+y = -k+1+k^2+1 \\ x+y=k^2-k+2 \\ x+y=(k-2)(k+1)$

#Soal 5. Persamaan Linear
x+2y+3z =14
2x-y+z = 3
-x+y-2z=-5
$z= \frac {a}{\begin{vmatrix} 1 &2  &3 \\ 2  &-1  &1 \\ -1  & 1 & -2 \end{vmatrix} }$
a) -30    b) -10   c) 10    d) 20    e) 30

Pembahasan:
Secara persamaan:
$z= \frac {D_z}{D} \\ z= \frac {\begin{vmatrix} 1 &2  &14 \\ 2  &-1  &3 \\ -1  & 1 & -5 \end{vmatrix}}{\begin{vmatrix} 1 &2  &3 \\ 2  &-1  &1 \\ -1  & 1 & -2 \end{vmatrix} } $
Diketahui soal 
$z= \frac {a}{\begin{vmatrix} 1 &2  &3 \\ 2  &-1  &1 \\ -1  & 1 & -2 \end{vmatrix} }$
Silakan disamakan:
$z=z \\ \frac {\begin{vmatrix} 1 &2  &14 \\ 2  &-1  &3 \\ -1  & 1 & -5 \end{vmatrix}}{\begin{vmatrix} 1 &2  &3 \\ 2  &-1  &1 \\ -1  & 1 & -2 \end{vmatrix} }=\frac {a}{\begin{vmatrix} 1 &2  &3 \\ 2  &-1  &1 \\ -1  & 1 & -2 \end{vmatrix} } \\ a =\begin{vmatrix} 1 &2  &14 \\ 2  &-1  &3 \\ -1  & 1 & -5 \end{vmatrix}$
Lanjutkan mencari determinan matriks 3x3. Jika belum tahu bagaimana cara mencari determinan matriks 3x3 silakan baca selengkapnya di : Mencari Determinan matriks 3x3


Sumber http://www.marthamatika.com/

Post a Comment for "Contoh Aplikasi Matriks Dalam Penyelesaian Persamaan Linear"